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FOREWORD

The SNAP-8 seals-to-spece concept involves the use of visco pump, molecu-
lar pump, and dynamic slinger elements. The seals-to-space program encompassed
basic test work on each of these components for the purpose of demonstrating
satisfactory performence for SNAP-8 operating conditions. In addition to the
basic component tests, an overall integrated seal test rig was built and oper-
ated. Thie rig provided a nearly perfect simulation of the SNAP-8 turbine
alternator assembly seal-to-space configuration and thermal environment, and
demonstrated the satisfactory performance of the seal. ’ "

Volumes I through III of this report cover the work done on the visco
pump, moleculer pump, and dynamic slinger elements. Volume IV describes the
design and operation of the integrated seal simulator.

The SNAP-8 Seals-to-Space Development Test Program was carried out under
the auspices of the SNAP-8 Division, Von Karmen Center, Aerojet-General Corpora-
tion, as part of the SNAP-8 Contract work.

Mr. C. G, Boone, (hief Engineer for the SNAP-8 Division, had overall re-
sponsibility for the SNAP-8 Seals~to-Space Development Test Program. Mr. P. L.
lessley, Engineering Department, SNAP-8 Division, had direct responsibility for
the program, Assisting Mr, lessley were E. A, Haglund, J. N. Hodgson, and
I. L., Marburger, all of the Engineering Department, SNAP-8 Division.
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NOMENCT-ATURE

Definition Unit
Flow equation constants in.j/sec
Area in.2
Chennel width in.
Flow equation constants in. 1b/sec
Perimeter in.
Flovw equation constants | in.e/lb
Flow - minimum correction factor
Diameter in.
Frictional force 1b
Coefficients of momentum transfer
Gravitational constant, 386 1n./sec2
Channel depth in.
Boltzmann Constant, 6.78 x 1072 in. 1b/°R
Momentum transfer time constant
Geometrical factors
Coordinate along flow path in.
Molecular pump length in.
Mass of molecule lbmseca/in.
Rotational speed rpm
Pressure 1b/in.?
Driving pressure lb/in.2
Externel pressure, at zero flow 1b/1n.°
Volume flow rate at unit pressure in. 1b/sec
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NOMENCLATURE (cont.)

Definition Unit
Net volume flow rate at unit pressure in. 1b/sec
Gas constant in./°R
Avsolute temperature °r
Molecular tangential velocities at boundary surfaces in./sec
Rotor periphera. velocity in./sec
Average fluid velocity in./sec
Velocity in direction of flow in./sec
Volume flow raie in.3/sec
Land width in.
Weight flow rate 1b/sec
Coordinate perpendicular to flow path in.
Rotor-induced flow _‘acior in.j/sec
Channel continuum flow factor in.6/1b-sec
Channel molecular flow factor in.u/sec
Lend centinuum flow factor in.6/1b-sec
Land molecular flow factor in.h/sec
Racial cleararce in.
Prictione. force coefficient lb-sec/in.5
Ccefficient of rlip in.
Mean free psil in.
Viscosity 1b-sec/in.?
Density 1b/1n.3

Helix engle
Small increment

Constant relating mean free path and coefficient
of slip
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SUMMARY

The sesls-to-spece of SNAP-S require a means of restricting the flow of
mercury end lubricent vapor out of the vent to space., This flow restriction is
accomplished by use of a moleculer pump - & highly effective form of flow re-
strictor based on the principle of the Holweck vacuum pump, Rather thean using
the statle action of the conventional annulus or labyrinth, the molecular pump
employs & dynemic action which moves molecules counter to the pressure gredient
to space.

The theoretical performence of the molecular pump wae Garived in detail
as part of the fluw restrictor development program. The theory was developed
based upon the assumption of purely molecular flow. A computer program was con-
ducted which ellowed optimization of the molecilar pump dimensions over a large
variety of operating conditions. The independent varisbles exercised were diem-
eter, speed, temperature, length, clearance, and molecular weight.

A very basic problem exists, however, in that 3NAP-8 uperating conditions
do not place the flow at the high-pressure end of the molecular pump in the
molecular flow regime. On the contrary, the flow extends well into the con-
tinuum regime; thus the optimum configurations predicted by the optimization of
the molecular theory are not truly optimum. To rectify this, a theory was de-
veloped which defines the performance of the molecular pump over the entire
spectrum of rlow regimes. Thils specially developed theory predicts the molecu-
lar pump performence for any given operating condition, and accounts for the
changing flow regime within the pump itself, Unfortunately, the complexity of
the final form of the performance equations has precluded an optimization pro-
gramw. However, sufficient insight into the flow phenomena has been gained by
the theory to allow intelligent extrapoclation from the molecular theory opti-
mumg toward the appropriete optimums for SNAP-8 operating conditions.

Several configurations were chosen for the test program, The first few
configurations were optimum as predicted by the molecular flow theory. As the
testing proceeded, the undegirable effects of the non-moleculsr flow conditions
becane apparent. Remedial measures were taken by increasing the number of
threads/in. and tapering the groove depth to make it shallow at the high-pres-
sure end of the molecular pump. Both procedures increased the ratio of mean-
free-path to channel dimensions, which served to make the flow more closely ap-
proach the moleculsr regime., The actual dimengions for these laitter non-optimum
configurations were based upon intuition and extrapolation from the molecular
theory. Tests were conducted on both the optimum and non-optimum sets of -~on-
figur.tions at teu.eratnres of 300 and 37€°F. The correlation between the theory
and test date was good.

Three basic problems were encountered during the test program: (1) shaft
seizure occurred several times during the initial phase of testing, (2) equip-
ment malfunction caused interface temperatures to be well in excess £ LOO®F,
and (3) entrained air in the bearing lubricant leaked into the molecuiar pump
area causing pressure ratios tu be low enough to lead to the premature conclueion
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SUMMARY (cont.)

that the molecular pump was not functioning. Once these problems were brought
under control, e successful test program was cerried out. Both pressure ratio
and leakage date are in good egreement with theoretical predictions.

The test program served to answer a number of questinns regarding the ef-
fectiveness of the molecular pump as & flow restrictor. For example, it had
not been known if the theory would adequately extend to the geometrical limita-
tions of the SNAP-8 application. (SNAP-8 requires a short moleculsr pump and
large redial clearance, whereas in the original context as a vacuum pump the
molecular pump is long and depends heavily on the radial clearance being small.)
The test program indicated that the theory extends well to the SNAP-8 require-
ments. It wes not known what influence continuum flow effects might have on
the performance of the molecular pump. As & result of the transition flow
theory which heas been developed, it is now possible to predict the influence of
non-molecular flow conditions. Tests have been made substantiating the validity
of the theory. It was not known what configuration should be recommended for
SNAP-8, Before a specific configuretion was selected, consideration was given
to (1) the optimum values developed from the molecular flow theory, (2) transi-
tion flow theory, and (3) comparison of theoretical predictions with test re-
sults. The configuration selected has five threads/in., equal land and groove
widths of 0.100 in., and & groove depth of 0,070 in.

ix
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I. INTRODUCTION

The turbine working fluid of the SNAP-8 system is mercury, whereas the
bearing lubricent 1s oil. This situation creates & need for a seal-to-space
inssmuch as the two flulds, somewhere in the system, occupy adjacent areas.
Either the fluids are allowed to interdiffuse at their Junction, the amount of
vhich would be quite prohibitive, or they Jjoin to a common vent to space. The
latter slternative can limit the interdiffusion of the fluilds to negligible
quantities and has been chosen as the design principle for SNAF-8,

With both oil and mercury having direct access to a vent to space, there
necessarlly must be a seal for each which allows only a minimum tolerable leak-
age. Since it is mandatory that the seals function for a minimum of 10,000
hours, no standerd rubbing-contact seal can be used. It is evident that the
seal-to-space must be a highly advenced, yet reliable component of the SNAP-8
system. This advanced seal design has been conceived, tested, and shown to be
capable of fulfilling its requlrements. The components of the seal~to-space
are (a) a dynamic slinger (or alternatively, a visco-pump) to maintain a liquid-
vepor interface, (v) & cooling system to control the liquid-vapor interface temp-
erature within design tolerances, and (¢) a flow restrictor to restrict the flow
out of the space vent of molecules evaporating from the liquid at the interface.
This report covers the third component of the seal-to-space, the flow restiric-
tor. Although the test program is given primary consideration, theoretical de-
sign and interpretation are included as appropriate. '

Prior to initiation of the SNAP-8 seal-to-space program at Aerojet-General
Corporation, the standard method of restricting the flow of vapor along a shaft
was by use of elther a mirple close-fitting annulus or a labyrinth, The leakage
through an annulus or labyrinth was great enough to warrant resesrch into new
principles of vapor restriction. The molecular pump evolved as a result of this
research. This type of flow restrictor is based on the principle of the Holweck
molecular pump, a well-known type of vacuum pump commonly used in Europe some
years ago (References 1 through 3). The pump is simple in principle, consisting
of a rotating shaft surrounded by a helical channel (Figure 1). Molecules within
the channel alternately strike the rotating shaft and stationary channel walls.
Ae a result, they receive a net velocity in the direction of the channel, which
in effect pumps them upstream and away from the vent to space. Since the pump
outlet vents directly to space, there is & relatively large pressure gradient im-
posed upon the pump which induces a flow opposite in direction to the flow caused
by the shaft motion. The overall effect 1s a small leakage out the space vent.
Tne magnitude of this leakage to space is & function of the molecular pump con-
figuration and the imposed operating conditions. The pump is capable of excep-
tional flow restriction and makes a very effective component for the SNAP-8 seal~
to=grace.

1
e




-

Report No. 2808, Vol. II

The theoretical performence of the molecular pump was derived in detail Zur-
ing the seal-to-space development program. The theory wes developed first on the
assumption of purely molecular flow conditions within the pump (Appendix hA),
Ideally, a molecular pump is not required to operate other than in the molecular
flow regime. However, the conditions of SNAP-8 are out of the molecular flow
regime, and well into the continuum flow regime. Consequently, it was necessary
to develop an extended theory which defines the operation of a molecular pump
under sll conditions (Appendix B). A computer survey was made to determine the
optimum geometrical configurations for a molecular pump as predicted by theory.
Due to the complexity of the transition theory, it was deemed appropriate to base
the computer study on the simpler molecular flow theory.

From the results of the computer program, test sections of optimum geometri-
cal configurations were fabricated for the test program. The objectives of the
test program were as follows: (a) to test the optimum configurations, (b), to
make geometrical changes as found appropriate to better control the non-molecular
flow conditions, and (c) to select a suitable molecular pump for use in the SNAP-8
seal-to-space. These objectives were successfully accomplished in the test pro-
gram. The following pages outline the test program apparatus, methods, sequence
of testing, and problems encountered. The test results are then summarized and
interpreted in the light of theoretical considerations.

The insight from the flow restrictor program gives rise to some recommenda-
tions for interesting future research. First, the transition theory could profit-
ably be analyzed on a computer to give optimum configurstions for a few selected
operating conditions. Future work on the transition theory might also include
consideration of tepered groove depths and multi-flight threads. Although the
number of thread flights appears to be of little consequence in molecular £low,
it might be importent in trensition flow. Another innovetion thet appears rather
promising is the use of grooves on both the rotor and stator. A preliminary
analysis indicates that this would be beneficial. Another field of interest
might be the construction of the molecular pump radially on a disk rather than
axislly. This has been done in vecuum pump epplicetions (Reference 2). The con-
struction need not necessarily be in the form of channels; a bladed-type molecu-
lar pump (Reference 4) which allows much greater clearances could conveniently be
incorporated into a disk-type assembly. The extensions and improvements are
numerous. The entire principle of flow restriction by means of the molecular
pump is & promising field wortny of further investigation.

II. TEST APPARATUS, METHODS, AND PROBLEMS

A. APPARATUS

All tests were conducted in the Environmental Laboratory of the
Astrionics Division, Von Karman Center. The laboratory is specifically designed
for high-vacuum work and is therefore equipped with all the support equipment
necessary for the molecular pump tests.

Figure 2 is an assembly drawing of the molecular pump test fixture,
The basic functions of the fixture can be noted as follows:
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1. Item A is the spiidle, mounted on two sets of ball bearings. A
sleeve at the test section region allows selection of any desired radial clearance.
Clearances were varied from 0.001 to 0.005 in. during the test program. The
spindle was driven at 12,000 rpm, ’

2. Ttem B is the molecular pump test piece., wnumerous combinations
of clearance, groove depth, threads/in., and materials were used during the program
(see Sections III,A and III,B).

3. Item C is the vapor ggnerator which supplies saturated mercury
vapor to the region upstream of the molecular pump. Hence, it simulates the
liquid-vapor interface of the SNAP-8 system. Temperature control is effected by
a cartridge heater core and by temperature monitoring with thermocouples at the
liquid pool surface (interface). The generator also contains a liquid-nitrogen
passagevay to freeze the mercury during the initial air evacustion phase of test-
ing.

h, Item D is the space simulation component of the fixture. The
entire region downstream of the molecular pump is connected, through yalving, to
a8 diffusion vacuum pump which prnvides for initial degassing of the system and
subsequent space simulation.

5. Item E is the mercury condensate trap. This component is a re-
wmovable cup which, during tests, is surrounded by a bath of liquid nitrogen. By
weighing the trap before and after a test run, the condensate weight - and thus
the leakage rate - can be determined.

6. Item F is the double-seal system to separate the bearing lubri-
cant and the mercury vapor during tests. The region between the seals is main-
tained, by means of a second diffusion vacuum pump, at a pressure lower than the
vapor generator pressure. This minimizes leakage of oil into the mercury side of
the fixture.

Te Item G is the heating system for the test fixture itself. Hot
nitrogen passes through passageways in the fixture to maintain the temperature
above the vepor pressure of the mercury. Otherwise, condensation would occvr at
the test section rather than in the condensate crap.

Figure 3 shows schematically the lubrication system and instrumenta-
tion arrangements. Figure 4 is a photograph of the assembled and instrumented
test fixture mounted between the two diffusion pump vacuum systems. The trans-
parent plastic case is a safety feature to allow removal from the room of any
mercury leaking from the fixture. A mercury vapor detector indicated no mercury
leakage during any test.

B. METHODS

The method of conducting a test divides into seven basic parts as
indicated on the following page.

‘%"%‘Kﬁ;
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1. Preliminary Degassing

Before any test, it is necessary to degas the entire mercury
slde of the system; this applies particularly to a newly assembled unit. Other-
wise, it is impossible to get a good vacuum when the test is begun. If performed
at an elevated temperature (=300°F), the degassing can be accomplished in 1 to
3 hours.

2. Mercury Freezing

The pool of mercury must be frozen during the initial phase of
~ test when the air is being evacuated from the system. Otherwise, the mercury
would evaporate and be evacuated with the air.

3 System Evacuation

The diffusion pumps are next used to evacuate air and contami-
nants from the system., The length of time elaepsing for this phase is partially
determined by the completeness of the initial degassing process. The system 1s
considered evacuated when the presaure .ievel holds constant with no applied
vecuum source. The interseal area should be maeintained at a pressure below the
evecuation pressure to minimize the leakage of oil and/or alr into the mercury
side of the system.

h, Start Rotation

This phase is preceded by a slight heating of the vapor genera-
tor to minimize any temperature-induced stresses. The lubricant flow is general-
ly begun considerably before rotation to allow the lubricant flow rate and
temperature to stabilize.

5. Temperature Control

The entire fixture is brought to the operating temperature.
The housing temperature is maintained & few degrees above the generator tempera-
ture to eliminate condensation in the housing area.

6. Shutdown

Shutdowr. 1s effected by stopping rotation, bleeding air into
the system, warming the condensate trep to room temperature, and shutting off
all heat sources. Bleeding air into the system raises the pressure at the genera-
tor and halts the vepor leakage to the condemsate trap. Cooling the genevator to
stop evaporation is also used, but is a relatively slow procedure.

T. Weight Recording

When the system has cooled sufficiently, the condensate trap is
removed and welghed to determine the leakage rate.

[P
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C. PROBLEMS

Other than the usual minor problems involved in setting-up and instru-
menting a test fixture and lubrication loop, there are three problem areas which
affected elther the progress or data of the test program. The problem areas are
discussed below.

1., Shaft Seizure

During the first phases of testing, the program was beset with
numerous cases of the shaft and test section rubbing and seizing. The possible
explenations are numerous: vibration, misalignment, manufacturing and assembly
errors, temperature-induced stresses, etc. Improvements, even complete correc-
tion, of meny questionable areas and procedures were made. However, not until
operation was limited to radial clearances greater than 0.003% in. was the problem
completely eliminated. It appears that the problem may have stemmed from move-
ments due to temperature gradients. The increased clearance completely eliminated
the seizures and a successful test program was completed.

2. Interface Temperature

Erroneous interface temperature recording during the first
phage of testing resulted in excessive temperatures which seriously impalred the
apparent performance of the molecular pump. The interface temperature is recorded
by thermocouples in the liguid mercury of the vapor generator. The vapor genera-
sor is a relatively complex ¢ ,mponent of the test fixture, having an internsl
liquid nitrogen passageway, two thermocouple leads which must be sealed vacuum
tight, and a cartridge heater all combined into a small volume. Unfortunately,
the only vepor generstor aveilable during much of the testing had thermocouples
vwhich were dameged either in the manufacture or in the delivery of the generator
and which as e result were not operating.

In order to make some approximstion of the interface tempers-
ture, other thermocouples were inserted as far as possible into the vapor genere-
tor housing thermocouple inlets, thereby allowing & measurement of the housing
temperature relatively near the liquid mercury. Since it was known that the
thermocouples would read low due to the insulating effect of the liguid nitrogen
passageway and heat loss to the surroundings, it was assumwed the actual interface
temperature was 25 to 50°F above the thermocouple readings. Heating of the gener-
ator by the cartridge heater was restricted accordingly.

Finally, during the latter part of the test program, a new vapor
generator was obtained that was equipped with functional thermocouples. It was
found that the 25 to 509F temperature difference assumed between the generator
housing and liquid-vepor interface was much in error. By comparison of voltage
gettings previously used, it was found that all grevious tests had been run with
an actual interface temperature in excess of 400°F (rather than the assumed 300°F),

The vepor pressure of mercury at temperatures greater than 4o0°F

is so high that the molecular pump could not possibly bring the flow into the
molecular regime. Without being in the molecular regime, no pressure ratio of

Sy
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any consequence could be developed. The result was that all tests to that date
showed very low pressure ratios and high leakage, leading to the premature con-
clusion thet the molecular pump was not functioning well.

Future tests were most rewarding. The interface temperatures
were held at the desired values, pressure ratios were good, and leakage values
approached theoretical expectations. The highly successful latter phase of the
test program, where the numerous datsa points were obtained, was initiated by
this successful control of interface temperature.

3. Face Seal leakage

The bearing lubricant and mercury vapor are separated by two
face seals, the area between which is connected to a high-vacuum system. The
purpose of this seal system is to draw off any mercury and oil which leak through
their respective seals. In general, the seals were unable to aaintain good seal-
ing at 12,000 rpm. Wear rates were very acceptable, but the abllity to seal
against a vapor (or even a liquid) was poor with rotation. This condition held
regardless of the care taken in initial alignment and surface honing of the seals.

Or & few occasions, tests were ended ahead of schedule due to
excessive oil leakage. This, though, was only a minor problem. The prime prob-
lem associated with the imperfect sealing was the effect produced on pressure
ratio data. The lubricating oil had a certain amount of entrained air. The in~
creased temperature at the seal area assisted in the release of this air which
then migrsted through the oll seal to the interseal area and, subsequently,
through the mercury seal into the molecular pump ares. Although mercury mole-
cules were flowing in the opposite direction through the mercury seal, with the
flow in the molecular regime they essentlelly do not hinder the air molecule
fiow. The flow of alr molecules continues until an equilibrium pressure bullds
up in the moleculsr pump area.

The effect on pressure ratio date lies in the fact that air,
consisting as it does of relatively light molecules, is not pumped so well as is
merc ry by the molecular pump. Consequently, air molecules rather readily pass
through the molecular pump to the downstream ares until they bulld up & pressure
downstream dictated by the molecular pump's particuler ability to pump air mole-
cules,

The abcve phenomenon is readily observed in the pressure ratio
dats of the test program, Frequently, a substantial pressure ratio, character-
istic of mercury vepor, :rould persist for considerable periods of time (30 or
40 min) until the seals began to lesk. As the interseal area pressure begen to
rige, indicating an increased seal lsakege, the pressure ratio would begin to
drop. This drop would continue until an equilibrium pressure ratio characteris-
tic of air molecules developed., It was possible to temporarily evacuate the air
that occupied the molecular pump &ree by opening the valve to the diffusion pump
connected to the downstream area. However, once seal leakage had begun, this re-
lief wes only temporary, and s very rapid return to the alr pressure ratio oc-
curred. The opening and closing of the downstream vacuum valve is represented
by the discontinuities in the pressure-ratio data curves.

6
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Although the alr leakage greatly affected the pressure-ratio
deta, the effect on leakage data can be disregarded. The pressure of mercury
vapor at the molecular pump entrance is determined solely by the interface
temperature. The presence of air molecules increases the total pressure but
hag no effect on the mercury-vapor driving pressure. The sir molecules develop
a partial-pressure ratio which is small, whereas the mercury molecules develop
& partisl-pressure ratio which is large. The recorded pressure ratio is there-
fore small, but the mercury leakage goes on independently at the rate dictated
by the higher pressure ratio. Subsequent to this program, tests on the SNAP-8
Seal Simulator were conducted both with and without the presence of air mole-
cules. These tests showed no measurable effect of the air molecules on leakage
rete.

I1IT. TEST RESULTS

In this section, the entire testing sequence is outlined. Each molecular
pump configuration is described and a brief summery of pertinent happenings is
given. All test sections have a diameter of 1.625 in., a length of 2.00 in., and
a single flight thread. All tests were made at a speed of 12,000 rpm. The test
sequence below is divided into Parts I and II. Part I represents the testing
period during which seizures occurred and during which excessive interface temp-
eratures vere being used. In splte of these difficulties, some meaningful leak-
age data were obtained which were in keeping with expected values for the higher
temperatures.

Part IT contains the testing sequence for the latter phase of the program.
During this phase, the radial clearance was increased to 0.0043 in. and the temp-
erature at the interface wae accurately controlled. The testing was a complete
success, Data were obtained at temperatures of 300 and 375°F, and & good corre-
lation with theory resulted.

Sectlon III,C presents an interpretation of the test results. The data
points are expleined in light of the theoretical predictions. Both the molecu-
lar regime and transition regime are included. :

A, PART I OF TEST SERIES

Listed below are the principal features of each configuretion tested,
and the basic results of the tests. '

1. Configuration 1

) Configuration 1 consisted of a stainless-steel molecular pump
(Figure 5) with groove dimensions optimum for 0.002 in. radial clearance. The
actual radial clearance was 0.0018 in. The groove width was 0.180 in., and the
land width was 0.150 in. (3.03 threads/in.). The groove depth was constant at
0.970 in.

This configuration operated for about 30 min; then the shaft
and test section seized. Excessive vibration of the entire fixture wus noted.

g
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The .. -ation was later found to be the result of a menufacturing error; the drive
spline was about 0,012 in., eccentric. Low pressure ratios were recorded as a re-
sult of the excessive interface temperatures. No leakege value was taken since
the startup and shutdown procedures had allowed considerable opportunity for
mercury leakage during periods of no rotation.

2. Configuration 2

Configuration 2 consilsted of a stainless-steel molecular pump
(Figure 5) with groove dimensions optimum for 0.002 in. radial clearance. The
actual radial clearance was 0.004 in, The groove width was 0.180 in., and the
land width was 0.15C in. (3.03 threads/in.). The groove depth was constant at
0.070 1in.

This configuration was the same one used in paragraph III,A,l
with the exception that burrs and other surface irrsgularities from the selzure
had been removed. Damage was more severe at one end and, consequently, the
clearance was not constant. An average clearance is assumed of approximately
0.00k in, Excessive vibration due to the spline eccentricity again occurred.
Pressure ratios again were low due to¢ temperature effects. The fi.ture ran for
1.5 hours at which time shutdown was ﬁnitiated due to excessive oil seal leskage.
The mercury leakage rate was 15 1b/10* hours.

3. Configuration 3

Conflguration 3 consisted of a stainless-steel molecular pump
(Figure 6) with groove dimensions optimum for 0,003 in. radial clearance. The
actual radial clearance was 0.0032 in. The groove width was 0.250 in., and the
lend width was 0,213 in. (2.16 threads/in.). The groove depth was constant at
0.071 in., .

The vibrastion problem was corrected by switching to a shaft
with a concentric spline. Low pressure ratios were again developed due to temp-
erature effects., The fixture ran for apout 30 min at vhich time the shaft and
test section seized. The mercury leakage rate was approximately 6 lb/lO hours,

L. Configurstion k4

Configuration U consisted of & carbon molecular pump (Figure 7)with
radial clearance of 0,0015 in., The groove width was 0,130 in, and the land
width was 0,120 in, (4,00 threeds/in.). The groove depth tapered from 0,005
to 0.050 in.

The approach was taken of using a carbon test section and al-
lowing it to wear-in at low speed prior to the actusl test run. After a care-
ful slow speed run-in period the mercury test was begun. The test lasted about
30 min at which time the shaft and carbon seized. Considerable damage to the
sleeve had resulted. No leakage data were taken., This marked the first test
using a tapered groove for greater ability to handle the transition regime flow.
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5. Configuration 5

Configuration 5 consisted of a Teflon molecular pump with a
radial clearance of 0,003 in., The groove width was 0,110 in. and the land width
was 0.090 in. (5.00 threeds/in.). The basic section was 1,40 in. in length and
had a constant groove depth of 0.045 in. A pre-molecular-pump section had a
length of 0.50 in. and a constant groove depth of 0,006 in.

This configuration was fabricated of Teflon in an attempt to
provide a wesr-in ability should the shaft and test section touch. An innova-
tion was the use of a pre-molecular pump sectlon to handle the transition regime
flow., The pre-molecular pump was simply a short length of molecular pump, the
groove depth of which was very shallow. The depth of groove was made optimum
for continuum regime flow. This configuration was the first to show acceptable
pressure ratio data. The test was run at a reduced temperature as a safeguard
for the Meflon and hence removed the temperature effect which had previously
been hindering the development of ample presgsure ratios. The test was discon-
tinued after about 35 min when the pressure ratio was guddenly lost. The Teflon
and shaft had seized, but rotation continued due to the low strength of Teflon.
Powdered Teflon coated the entire inside of the fixture up to the mercury face
seal., No leakage data were obtained.

6.  Configuration 6

Configuration 6 consisted of a stainless-steel molecular pump
(Figure 8) with groove dimensions optimum for 0.001 in, radial clearance. The
actual radial clearance was 0.002 in. The groove width was 0.120 in., and the
landswidth was 0,091 in. (4.Th4 threads/in.). The groove depth was constent at
0.058 in.

This test was characterized by extreme ceore in assembly and
alignment to minimize the possibllity of & seizure. Seilzure occurred almost
immediately, within about 3 to U sec of startup, At this point it was decided
to conduct an extensive examination of shaft perturbetions, temperature-induced
motions, alignment problems, etc.

T, Configuration 7

Configuration 7 conesisted of a stainless-steel molecular pump
(Pigure 9) with a radial clearance of 0.003 in. The groove width was 0,110 in.,
and the land width was 0.090 in., (5.00 threads/in.). The groove depth tapered
from 0,015 to 0,080 in.

This and all future test sections are marked by a modified
test section which places the molecular pump about 1-1/2 in. closer to the bear-
ings. This was done to minimize the megnitude of shaft perturbatinns at the
test section. The shaft seized after about 14 min of operation. Fowever, good
pressure ratio dats were obtained. No leakage megsurement was mr.de since there
wus no discernible amount.
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8. Configuration 8

Cornfiguration 8 consisted of a stainless-steel molecular pump
(Figure 9) with a radial clearance of 0.0043 in., The groove width was 0.110 in.,
and the land width was 0.090 in. (5.00 threads/in.). Tke groove depth tapered
from 0.015 to 0.080 in.

From this point on, no tests were run with radial clearances
less than 0.004 in., and nc furtner seizures occurred, The test was continued
for 3 hours with a measured leakage rate of 1.6 lb/lO& hours. This low leakage
value is the result of using cooling in the face seal aree which lowered the ef-
fective interface temperature even below 300°F.

9. Configuration 9

Configuration 9 consisted of a stainless-steel molecular pump
(Figure 10) with a radial clearance of 0,0043 in, The groove width was 0.110 in.,
and the land width was 0.090 in., (5.00 threads/in.). The basic section was
1.40 in. in length and had a constant groove depth of 0.070 in, A pre-molecular-
pump section had a length of 0.50 in, and a constant groove depth of 0.01k4 in,

hThe fixture was operated for 3 hours and gave a leakage rate
of about 30 1b/10™ hours. .

B. PART II OF TEST SERIES

The demarcation between Part I and Part II of the test program was
the acquisition of a vepor generator with functional thermocouples. It became
apvarent that previous tests had been run with interface temperatures well in
excess of 400°F; hence the poor pressure ratlios and high leakage rates. The
ability to accurately control interface temperature, together with the decision
to run at redial clearances of 0.004 in, or greater, indicated that an eminently
successful series of tests would follow. Such was the case. Four configurations
of molecular pump were fabricated which investigated ths effects of both a tapered
groove depth and the numter of threads per unit length. All but one configuratien
were run at both 300°F end 375°F go as 1o investigate the effects of shifting well
into the continuum flow regime, Pressure ratio data and leakage rates were meas-
ured on each test. Since all the tests were conducted identicelly and require no
individuel description, they are summarized in Table 1. Section III,C is devoted
to an interpretation of the Part II Test Series results and conclusions as they
relete to the SNAP-8 system.

C. INTERPRETATION OF PART II TEST RGSULTS

1, Leskage Datu

All the leakage test results of Part II are included as Figures
13 through 16 where each molecular pump configuration is represented on a plot of
leakage rate vs temperature. To give a meaningful comparison, each plot also in-
cludes leakage values for an annulus end the theoretical predictions for the

10
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molecular pump based on both the molecular thecry and the transition theory.
Appendix A presents the mathematical basis for the molecular rlow curves, and
Appendix B gives the basis for the transition flow curves. To present both the
mrlecular and transition theory considerations, the interpretation of the test re-
sults which follows is divided into two categories: (a) a comparison of the test
data with the molecular flow theory, and (b) a comparison of test data with the
transition theory.

8. Comparison with Molecular Flow Theory

The mean rree path of saturated mercury vapor is such that
the molecular flow regime is being taxed at 300°F; at 375°F the flow definitely
favors the continuum regime. Accordingly, the agreement between test data and the
molecular flow thsory should be relatively good at 300° F, whereas at 375 °F there
should be evidenced a substantial deviation between theory and test. This general
trend is well exemplified in Figures 13 through 16.

There are two basic approaches available to increase the
ability of a molecular pump to handle transition regime flow conditions. One
method is to increase the number of threads per unit length; the other is to
taper the groove to a very shallow depth at the pump entrance. Both methods de-
crease the basic distance & molecule must travel before another collision with e
surface of the molecular pump. Whether one or a combination of both these methods
is best is a function of the operating conditions. At present, there is no theory
developed which allows optimization with a variable groove depth. The pressure
ratio and leskage equations of the transition theory are sufficiently complex that
making the groove depth o function of pump length was deemed a prohibitive compli-
cation.

Ag 300°F there 1s good agreement between theory and test
results for the configurations of Figures 13 and 1k, This is attributed to the
fact that the configuration of Figure 13 has many threads per unit length, and the
configuration of Figure 14 has both many threads per unit length and a tapered
groove depth. When a decrease is made in the number of threads per unit length,
a8 in the configuration of Figure 15, the leakage begins to exceed the theoretical
velue. In the configuration of Figure 16, neither the many threads per unit length
nor the tapered groove depth i1s used As would be expected, the flow departs even
further from tne moleculer regime, and the leakage is far above theoretical pre-
dictions.

At 300°F the best of the four configuretions is repre-~
gsented by Figure 13, which has 5 threads/in. However, assuming purely molecular
flow, the theory specifies that 2 threads/in. is optimum. No tests were conducted
at a lower tempsrature to test this relationship between 5 and 2 thrrads/in. Re-
gardless of this, the trend to favor only 2 threads/in. is observed :ven with the
relatively stringent conditions at 300°F. With respect to the configurations of
Figures 14 and 15, the 2 threads/in. test showed much less leakage than the 5
threads/in. test. The tapered groove depth of the two configurations apparently

12
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geve enough control to the transition flow effects thet the optimum nature of
only 2 threads/in. could manifest itself. It is presumed that, at & lower temp-
erature, the 2 threads/in. configuration would show up the more favorable even
writhout the tepered groove depth.

Operation at 375°F shows some further interesting results.
The higher temperature operation should increase the discrepancy between the test
data and the molecular flow theory. This, of course, occurred as can be seen for
the configurations of Figures 13 through 15. (The configuration of Figure 1€ was
not tested at 375°F becesuse it would obviously have a very high leakage rate.)
The configuration of Figure 1l is of interest. This configuration has both an
increased number of threads per unit length and a tapered groove depth. There-
fore, this configuration should have a reasonable ability to handle the transi-
tion conditions at 375°F. This abllity is best observed in Figure 17 which is a
plot of the experimental data only. The tapered, 5 thread/in. configuration leak-
age curve has the least slope of any in going from 300 to 3750F. The very low
leakage at 375CF is questionable and perhaps represents an experimental error.
However, the transition theory confirms the low slope of the leakage curve for
this configuration. It can be concluded that increasing the threads per unit
length and introducing a tapered groove depth increases the ability to handle
transition regime flow,

It is to be remembered that the optimization studies done
for the molecular pump are only for molecular flow. The choices of 5 threads/in.
and the particular tapers used on grooves were selected by intuition and are neces-
sarily somewhat arbitrary. Thus, the best configurations, chosen on the basis of
the test results, are not necessarily optimum. However, as compared to the plain
annulus the advantage of the test pieces selected is pronounced.

b. Comperison with Transition Flow Theory

Appendix B presents the development of a molecular pump
theory which is applicable over the entire range from continuum flow to molecular
flow, including the transition within the pump itself. Time and the expense of
the computer program which would be required precluded an optimization of the re-
sulting pressure ratio and leakage equations. However, even though it is not pos-
sible to find the optimum configuration, it is at least possible to evaluate the
performance of a given configuration., This is possible since the pressure ratio
equation lends well to & trial and error solution. By trial and error each -on-
figuration of the test program was analyzed to deteraine its pressure ratio at
300 and 375°F. By then meking the sufficiently accurate assumption thet leakage
rate is- inversely proportionsl o pressure ratio, the leakage rates were evalu-
ated for each configuration. These leaksge datc form the curves of the transi-
tion theory in Figures 13 through 16,

The transition theory is observed to be a considerable
imporovement over the mrolecular theory. This improvement is perticularly marked
et 375°F but is also evident at 300°F. At Z000F, the molecular and transition
theories are in close agreement in Figures 13 and 14 which represent the 5 threads/
in. constant groove depth and tapered groove depth configureations, respectively.

13
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This is as would be expected since 5 threads/in. gives small enough channeli di-
mensions that the molecular theory is not far from accurate. Proceeding to
Figures 15 and 16, which describe the 2 threads/in. tapered and constant groove
depths, respectively, the advantage of the transition theory becomes most ep-
parent. The constant groove depth is the best example. Since 2 threads/in.
with a constant groove depth takes the flow well out of molecular flocw, the re-
corded leakage value is s decade above the molecular theory value. The transi-
tion theory, however, brings good agreement between theory and experiment. The
tapered groove depth likewise shows improvement with the transition theory.

The leskege rates measured at 375CF are lower than pre-
dicted by the transition theory. The reasons for this are not fully understood.
However, it is possibly due to an increased flow upstream in the molecular pump
due to the inability of the cold trap collection system to fully simulate space
at the higher leakage rates characteristic of the elevated temperature. The in-
creased upstream flow lowers the net leakage. It is quite reasonable to expect
the high leakage rates at 375°F as given by the transition theory, for the mean
free path at this temperature is well below 0.001 in. This means that chamnel
dimensions are as much as 100 times the mean free path.

The limits of the transition theory for very low and very
high temperstures are evident in the leakage plots. As the temperature decreases,
the transition theory approaches the moleculsr theory asymptotically. At the
other extreme, the transition theory intercepts and exceeds the leakage rate for
an annulus. This latter phenomenon is to be expected since the optimum groove
depth in continuum flow is much less than that for molecular flow. Therefore,
the channel tecomes a considerable leakage path in continuum flow and the leak-
age exceeds that for an annulus.

It appears that the test date are reasonably well coordi-
nated with theory. By optimizing the transition flow equations, optimum channel
dimensions could be known for any operating temperature. At present, however,
the theory based on molecular flow, together with good Jjudgment, must suffice
for design purposes.

2. Pressure Ratio Data

As discussed in Section II,C,3, t'.e pressure ratios registered
during much of the testing were adversely affected by the presence of air mole-
cules, However, enough testing was accomplished where the air problem was not
excessive to allow a meaningful analysis of the pressure ratio capabllity of
molecular pumps. The pressure ratio dats are plotted as Figures 18 through 23.

The molecular pump configuration selected for SNAP-8 hes 5
threads/in. and & constant groove depth. The performance of this configuration
is presented in Figures 18 and 19. Figure 18 shows the pressure ratio data for
alr, taken before mercury was added to the system. The agreement with theory is
good. The hump observed in the curve is rather common to the tests., It is the
result of start transients. Since the upstream volume is small compared to the
downstream volume, pressure transients upstream are not immediately reflected
downstream, end the pressure ratio is affected accordingly.
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Figure 19 shows the mercury pressure ratio data of the SNAP-8
configuration. Again excellent agreement with theory is observed. The excellent
agreement lasts for about 1-1/2 hours at which time the pressure ratio tekes a
sudder: decrease and, as can be observed, approaches the value characteristic of
air. The sudden decrease is associated with face seal leakage which allowed air
from the oil lubricant through to the mercury side of the test fixture. When the
pressure ratio was lost, the downstream volume was next briefly evacuated of aiw
by opening and closing the valve to the vacuum system. This process allows the
beginning of a new pressure ratio transient as represented by the second curve of
the figure. However, once seal leakage begins it is permanent, and the pressure
ratio very rapidly again seeks equilibrium at, or near, the value for air.

Figures 20 through 23 show pressure ratio data for other combi-
nations of configuration and temperature. Most equilibrium pressure ratio values
in these figures are characteristic of air or & compromise between air and mercury
indicating a degree of air leakage into the system.

15
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Test Section - Optimum Configuration for 0,002 in,
Radiel Clearance (Constant Groove Depth = 0.070 in.;
Groove Width = 0.180 in.j; Land Width = 0.150 in,)

Figure 5
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Test Section - Cerbon Insert (4 Threads/in.;
Tapered Grocve Depth = (.005-0,050 in.;
Groove Width = 0,130 in.; Land Width = 0.120 in.)

Figure 7

R

Cr I I

e,
e

's



16h=4l2

Report No. 2808, Vol. II

3 //n///:x,;:u V=

k\{’ s

Test Seccion - Optimum Configuration for 0.001 in,
Radial Clearance (Constent Groove Depth = 0.058 in.;
Groove Width = 0.120 in.; Land Width = 2,091 in.)

Figure 8
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Test Section - 5 Threads/in.

(Tapered Groove Depth = 0.015-0.080 in.;
Groove Width = 0.110 in.; Land Width = 0.090 in.)

Filgure 9
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164-945

Test Section - 5 Threads/in.
(Pre-Molecular Pump Section; uroove Depths = 0.0lk4
and 0,070 in.; Section Lengths = C.50 and 1,40 in.;

Groove Width = 0,110 in.; Land Width = 0.090 in.)

Figure 10
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Test Section - 5 Threads/in.
(Constant Groove Depth = 0.070 in.;
Groove Width = 0.110 in.; Lend Width = 0.090 in.)

Figure 11
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Test Section - 2 Threads/in.
(Constant Groove Depth = 0.080 in.;
Groove Width = 0.280 in.; Land Width = 0,220 in.)

Figure 12
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APPENDIX A

MOLECULAR FLOW THEORY OF THE MOLECULAR PUMP AND COMPUTER RESULTS

I. INTRODUCTION

The original concept of the molecular pump was as a vacuum pump.
Ordinarily, the vacuw.a pump is thought of only as a means of evacuating a
given volume. The speed with which this can be accomplished and the degree
of vacuum attainable are functions of the pump type and quality. However,
the vacuum pump can also serve effectively as 5 seal to maintain a pressure
differential between two regions, thereby reducing the leakage rate of the
fluid from the high-pressure region. The analysis to follow investigates the
potential of the moleculer pump as a sealing device.

The molecular pump falls within the class of vacuum pumps known as
mechanical pumps. The distinguishing fzature of the molecular pump with
respect to others of this class is that the molecular pump has no rubbing
contact of one part with another.

The molecular pump does not depend upon tight-fitting pistons, valves,
etc. to separate the high and low pressure sides of the system; instead, it
depends upon the pumping action effected by the motiorn of boundaries adjacent
to the working fluid. The princ.ple of operation is demonstrated in Figure
A-1l. The pump consists of a rotating shaft surrounded by a stationary casing
into which is cut a helical groove. Molecules striking the moving surface
acquire e velocity component iu the direction of motion of the moving member,
which results in an overall pumping action on the fluigd.

7777777

Figure A-1

A-1
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The pump, as a complete system, has three basic flow components. The
first, described above, is the motion along thehelical path induced by the
rotor. The second type flow is the reverse flow along thehelical channel
resuliing from the pressure gradient developed within the channel. The third
type flow is leakage over the channel lands. This latter flow is essentially
exial. Like the reverse flow along the helical channel, the lea .age flow is
motivated by the pressure gradient within the pump. Each of these flow types
is now considered separately and developed mathematically.

II. MATHEMATICAL FORMULATION

A. ROTOR-INDUCED FLOW

In the mathematical formulation of the problem it is assumed that
the gas between the rotor and the staticnary case is at a low enough density
thet the problem can be approached using simple laws derived from kinetic
l.Lhcory. The applicability of the laws is hased uponr maintaining the density
low enough, or the gas layer tnin enough, for molecules to travel from one
boundary surface to another without collisions with other molecules (i.e., the
mean free path is large compared with the dimensions of the confining surfaces).

In its most simple form, the rotor-induced flow is considereu as a
case of one plane surface moving parallel to a second stationary plane surface.
Figure A-2 shows two plates which represent the rotor surface and the surface
of the helical channel. The upper plate is moving with velocity U. With the
assumption of molecular flow, each molecule, after striking one plate, movec
at coustant velocity until it strikes the other plate. Hence, if u, is the
mean tangential component of velocity as the molecules leave the lower plate,
this will also be their mean coumponent as they arrive at the upper plate.
Similarly, u, represents the mean tangential component of wvelocity for molecules
as they leave the upper p.ate or arrive at the .ower plate.

T 77T 7T 7777777 7777771 ———»—— U
—

3
_— Y
2 A 0 7 0 9 0 A 9 9 80 0 S T Y T 4

Figure A-2

It is necessary next to introduce the coefficient f which represents
the fraction of tangential momentum possessed by a molecule that is trensferred
to a plate upon collision. The numerical vaelue of f is a function of the condi-
tions and type of reflection that occur at a boundary. For instance, if specular
reflection were assumed, a molecule would strike a surfac~ and reflect at an
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angle equal! to its angle cf incidence. The transfer of tangential momentum
world be zero (i.e., f = O). On the other hand, if diffuse reflection were
assumed, a cocmplate transfer of momentum would occur. That is, the molecule
would essentially be absorbed at the surface and then be emitted at an angle
completely independent of the angle of incidence. In this case, f = 1.0.
Tatle A-1 (Reference 1) shows some typical values of the coefficient f for
several combinations of gas and boundary surface material. In general, f is
seen to be not far from unity.

TABLE A-1

Combination fr

Air or CO2 on machined brass or o0ld shellac 1.00
Air on mercury 1.00
Air on oil 0.5¢
CO2 on oil 0.92
Hydrogen on oil 0.92
Air on glass 0.89
Helium on oil 0.87
Air on fresh shellac 0.79

Let £, and f_, denote the coefficients of momentum transfer at the
lower and upper p}ates, respectively. ZILetting M, equal the mess of vapor
striking the upper plate per unit aree per unit %ime, the momentum transferred
to the upver plate is

lee(u1 - U) (1)

This also represents the amount of momentum lost by the molecules striking the
upper plate. Therefore, the momentum transferred can also be written as

My (ay - uy) (2)
From Equations (1) and (2),
U -, = fa(ul - 0) (3)
Similarly, for the lower plate
w, - u, = f.u, (h)

A-3
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From.Equations (3) and (L)

. = U (5)

e
i\

In the actual application of the above principles to the molecular
pump, the lower surface of Figure A-2 is a channel rather than a plane surface.
Therefore, the average gas velocity is not simply

+
Up Ty

2

It will te assumed, inshead, that the velocity is a weighted average according
to the areas of the stationary and moving surfaces. Figure A-3% shows a molecular
pump with the defining nomenclature.
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Figure A-3
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Let a, be equal to the perimeter of the stationary surface perpendicular to

the d%rection of fluid motion, and let &, be equal to the width of the moving
surface -perpendicular to the direction of fluid motion. Therefore, the weighted
average flow velocity is

u.a. + u.a

U= —i—%——;—g—g in. /sec (6)
1 2
Letting a) = (b + 2n)
a2 =Db
where
b = channel width, in.
h = channel height, in.

Substituting these relationships into Equation (6) gives the average velocity as

fe(l - f,) £,
= U(b+2h)+f. Ub
ﬂ ) fl + f2 - fle £ + f2 - flf2
2 (b +n)
or
- y fe(l - fl)(b + 2h) + £.b ()
"~ P -
2(b + h) £+ f, - ff,
The volume flow rate at unit pressure is
Q = Jbhp (8)
wnere )
in.j 1b
QD = flow rate at unit pressure due to rotor motion, oo 5
in.
.2
p = pressure, lb/1n.
Combining Equations (7) and (8)
o - Ubh fe(l - fl)(b + 2h) + £,0 ,
2(b + 1) B S A A (9)

A-5
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The velocity, U, is a function of shaft speed, shaft dieameter, and channel
dimensions, and can be determined ae shown below.

P
U= % cosff (10)
where
N = shaft speed, rpm
D = shaft diesmeter, in.

¢ = helix engle
The angle @ 1s defined in Figure A-L from which

'[(nD)e - (W + b) Jl/2

f11)

cos =

nD

where

w = channel ridge width, in.

nD

Figure A-L

Combining Equations (9), (10), and {11), the rotor-induced flow at unit pressure
is

o - Mbh ':1'2(1 - fl)(b +2h) + f I;l [(nD e b){ll/Q b (12)

120 (b + h) fl+f-ff _]

B. PRESSURE-INDUCED FLOW IN CHANNEL

The flow of a low-pressure gas in a passageway is de 'ived from kinetic
tneory (Keference 2) as

A-6
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16 [ET A% &
%= K v

1 N2m B
where
, in.> 1
QP = pressure-induced fiow at unit pressure, See. o
Kl = constant determined by geometry in.
A = cross-seclional ares perpendlcular to flow, in.
B = perimeter of passageway perpendicular to flow, in.
1 = length along flow path, in.
T = temperature, OR
m = mass of molecule, lb-aece/in.
k = Boltzmenn constent, 6.78 x .'LO-23 in.-lb/OR
p = pressure, lb/in.2

The gecmetrical fector,

(13)

, 18 a function of the passageway length, area, etc.

For a rectangular passageway, where the length is much greater than the cross-

gectional dimensions, Reference 2 gives the factor Kl as

] g0+ .

1 2
7

3/21
+%’-[’L+y3-(l+72) ]J

7

where

o }e)

7:

Table A-2 beinw gives values compuved frum Equation (1h4).

N >
7+\/l+72) b ooP g L YL E Y

0.200 0.125

(1k)

0.100

TABLE A-2
y 1 0.667 0.500 0.233%
Kl 1.108 1.126 1.151 1.198

Kl is plotted vs 7y in Figure A-5.

A-T

1.297 1.400

1.L44Y
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The cross-sectional area and perimeter of the passageway are
A = bh (15a)

B=2(h+0v) (15b)

H

Substituting Equations (15a) and (15b) into Equation (13) gives the pressure-
induced flow at unit pressure as

8K 2
1 kT bh a ¢
% =5 \Jm il % (16)

A relationship is next required between the pump length, L, and the channel
length,{ . This relationship is shown in Equation (17).

2Du (17)

= COSa

where

n = number of turns of spiral = %—%ggg

Substituting in Equation (17) for n gives

/ . L
T b +w
and
7D 4L
k= 5 (18)

Combining Equations (16) and (18) gives the pressure-induced flow at unit

pressure &as
8K, (w + b)(bh)2
_ 1 ’ kT 4
Q = ZxD(h + b) orm E% (19)

C. LEAKAGE FLOW RATE

The final type flow to be considered in the molecular pump is the
leakage flow. The leakage flow is an axial flow over the ridges of the channel.
The analysis of this flow is similar to that for the preceding pressure~induced
flow. The flow rate is again given from kinetic theory as

2
_ 16 KT A° &
QL -3 K2 2m B E§ (20)

A-9
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In this case, the flow passageway is the clearance space between a channel ridge
and the rotor. Wnen viewed in the direction of flow, this passageway is a short,
slit-like tube. Values of the constant K, for a slit-like tube are given in
Reference 2 and are repeated as Table A-3 where d = radial clearance, in.

TABLE 3
%. 0.1 0.2 0.4 0.8 1 2 3 4 5 10
K, - 0.03 0.068 0.13 0.22 0.26 0.0 0.52 0.60 0.67 0.9k

When w/é = 10, K, = % zn(?- K, is plotted vs wh in Figure A-6.

The cross-secticnal area and perimeter of the leakage flow passageway are,
respectively,

Do

A= (Esga) (2la)

B (21b)

7D 3 . [21D

2 cos@ ¥ d’ o (cosa}
Next, the relationship between dp/dl and dp/dL is required. It will

be assumed that the pressure gradient variss continuously along the helical
channel. Moving axially, then, the pressure gradient has a discontinuity at
the beginning and end of each wurn of the channel. It will be assumed that the
pressure gradient is zero across a channel in a plane perpendicular to the
channel axis. Referring to Figure A-T, this means the pressure is the sgme at
points a and b. Therefore, the pressure gradient from b to c is (v +b)/v times
the pressure gradient from a to c¢. The relationship between the pressure
cradient from a tc ¢ and the axial pressure gradient, dp/dL, is next needed.

The pressure difference from a to ¢ differs from the pressure
differcnce from a to d by the ratio of the respective lengths along the
channel, i.e.,

7D

pvyer; B 7D tan¢ sin¢ e 2¢
) = CO8
cos

At the same time, the direct axial lengths a-c and a-d differ by cos¢. Therefore,
the pressure gradients differ by the ratio cos ¢/cos¢ = cos¢ and the pressure
gradient for leskage over the lands is

%% = w-;_b cOS¢ (%% (22)

A-10
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Combining Equations (20), (21), and (22) gives the leakage flow rate &bt unit
pressure as

8k (x0) & (w + b)
_ 2 kT dp
q, = 3w J?nm daL (23)
D. NET FLOW

The net flow through the p.md is the flow induced by the roter
motion minus the preswure- -induced channel flow and the leakage flow, or

Qy = % - % -
Introducing Equations (12), (19), end (23) gives
£(1 - £)(b + 2n) + £.D 1/2
__INbh 2 1 2 2 2
Oy = T20(b + 1) [ NE R } B“D> ‘(‘”b)] P
8K. ( 2 8 §2
K, (w + b)(bh) \I—E ap Ke(nD) (w + Db) T ap
" 3 (h + b) 2mm AL By 2rm 4L
or
£(1-£)(b+2n) + £p qb/e
__Nbh 2 1 2 2 2
% = T20(b + 1) [ NN A ]B“D) '(W+b)] P
2 2
8(w + b) \l K, (bh) .\ Ko(7d) dp
T T A oxm | (h + D) W aL
or
oy =00 - BT (2b)
where

f2(1-f\(o+2h)+fb 5 21/2
a= 190(h T D) T ¥ T, - T, E"D) - v+ b)]

8w + b ’—— K, (bh)2 Ke(nné)
P = J_.—l [ﬁ W v b) W
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Rearranging Equation (24),

Integrating,

:
|
92
\O
kel
i
ke

5
5
e
I
F
o
il
3

e}
where
p, = exit pressure (low pressure)
P, = inlet pressure (high pressure)
Therefors,
C=p, -y
and QN 3N oL
= - B
Po = ” (pe a) €
Solving for QN oL
' B
b, -Dp, €
=@ [0 xoit (25)
B
l-~-ce



Report Nc. 2808, Vol. II

Equation (25) is the flow rate at unit pressure. The weight flow rate is

QN Q
N
2o - & (26)
where
R = gas constant = l§ﬁ329 in./oR
M = molecular weight
o = density, 1b/in.5
From Equations (25) and (26), the weight flow rate is
r ol
- B
. Do TP ® (27)
N RT aL
B
l-e -
where
‘ f(l-f)(b+2h)+f§|
Nbh
@ = T20(6 + 1) L+, - £.E, [“D) “(‘”b)]

8_8(w+b2 kT
T 31D 2

Rm

PRY 2
[Kl ()% K, (D)
(b + b) W

Equation (27) defines the weight flow rate through a molecular pump.
The equation is applicable whether the pump is acting as a vacuum pump Or as a
seal. A positive value of Wy indicates flow from low to high pressure, and a
negative value indicates flow from high to low pressure. When being used as a
vacuum pump, the weight flow rate always has a positive value until the pressure
ratio reaches its maximmu value at which time the flow rate is zero. This maxi-
mum pressure ratio is derived in the following section. When the molecular pump
is acting as a seal-to-space, the pressure ratio imposed on 1t is greater than
the maximum it can develop as a pump, and there is a flow, or leakage, from the
high-pressure side through the pump and out tc the low-pressure region.

The situation of zero leakage, or perfect sealing, ie possible oniy

when the low-pressure side of the pump opens into a veesel of set volume. With a
set volume, the pump will eventually reach its maximum pressure ratio, and the

A-15
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net flow through the pump becomes zero. For a seal-to-space, however, the
volume on the low-pressure side is infirite; hence there 1g always a net
leakage rate through the pump, and Equation (27) always has a nerative value.

The maximum pressure ratio that che pumn can develop is only of
academric interest when the pump is serving es a seal-to-space since, by
definition, the maximum pressure ratio occurs at zero leakage - an impossible
condition. The actual pressure ratio on the pump will be very large. It
will not, however, be infinite unless the pump discharges directly to space
without any intervening passagewaycs. In molecular flow, the rale of discharge
through a passageway 1s not a function of downstream pressure, and a pressure
will exist in any passageway connecting the pump and space. The outlet passage-
wey will usually be of sufficiently low resistance, however, that the
assumption of an infinite pressure ratio is appropriate. Therefore, setting
p_ equal to O in Equaticn (27) gives the leakage flow rate rur sealing directly
tS space.

E. MAXIMUM PRESSURE RATIO

The maximum pressure ratio the molecular pump can develop when
operating as a pump is found by setting QN equal to O in Equation (24) to give

dp _ &
- P
or
p B
Integrating,

np-= % L+ ¢

When L =0, p = Py = exlt pressure at zero flow; when L =L, p = Py
o

Therefore, C = 1n pe and the meximum pressure ratio is

(o]

oL

P B

=" (28)

eO
where
£(1-£)(b+2h)+£D 1/2
a = e e 1 2.1 [(x0)2 - (w +b)°
120( b + D) £+ £, - I;T, \

A-15
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2 2
_ 8(v + b) kT [%1(bh) . Ke(“DJ).}
B = 30D 2nm (h + b) )

III. COMPUTER ANALYSIS

The leaka~2 rate through a molecular pump is defined by Equation (27).
There are three variables which define the pump geometry: groove depth, groove
width, and land width. Optimization of these three variables for various
combinations of molecular weight, diameter, speed, temperature, length, and
radial clesrance has been conducted on an IBM-TO90 computer. The resulting
optimum dimensions, pressure ratios, and leakage rates for the various combina-
tions of input conditions are tabulated on the following pages.

A-17
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APPENDIX B

TRANSITION FLOW THEORY OF THE MOLECULAR PUMP

Appendix A presents the theory of the molecular pump based on the assumption
of purely molecular flow. The unigue pressure ratio development, and hence flow
restriction, of the molecular pump is dependent on the flow being in the molecular
regime. If the flow, on the other hand, is in the continuum regime, the pressure
ratio development of the pump is, for all practical purposes, nil. In between
continuum flow and molecular flow lies a flow region called the transition.regime.
In this region the flow is a compromise between its two adjacent regions, the
flow characteristics being weighted toward the region of greater proximity.

Within the molecular pump, there is always a transition occurring-toward
molecular flow as the flow passes from the high-pressure end to the low-pressure
end . The degree to which molecular flow is achieved is dependent on the inlet
conditions of the pump. If the flow is molecular entering the pump, the entire
pumping process will be in molecular flow; this ls the ideal operating condition
for a molecular pump. On the other hend, i1f the inlet conditions are far encugh
into the caitimmum regime, the flow could remain in the continuum regime throughout
the pump; essentially no pressure ratio development would occur. A third process
occurs when the pump entrance flow 1s in the continuum regime, but not so far that
molacular flow cannot be achieved within the pump. The sooner molecular flow 1s
achleved, of course, the sooner the exponential pressure ratio development
characteristic becomes predominant. This lstter flow process is the type en-
countered in the SNAP-8 system. At the 300°F entrance condition, continuum flow
is favored. The flow, however, is not too deeply into the continuum regime, and
passes through the transition regime and somevhat into molecular flow.

The following discussion presents e mathematical mcdel of the moleculer
punp which is appliceble over the entire spectrum from continuum to moleculer
flow. Ae in Appendix A, the flow process is divided into three components:
(1) flow down the helical chennel due to the existing pressure gradient, (2)
flow axially over the lands dus to the pressure gradient, and (3) flow up the
channel due to the effect of the rotor motion. The flow processes are now
presented in the ebove order.

Bl
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I. PRESSURE-INDUCED FLOW DOWN CHANNEL

Knudsen (Reference 1) proposed the followirg equation to define the flow
of a fluid through a passageway:

l+clp
= I S (
Q=a'p+bd T o (1)
2
where
Q = volume flow at unit pressure
P = pressure
a', b', Cqs and Cy = constants tq be evaluated so as to make
the flow applicable over the entire flow
spectrum. T
The evaluation of the constants in Equetion (1) is the basic problem in
deriving the molecular pump performance charncteristics.
A, a' CONSTANT
By assuming purely continuum flow (i.e., p is very large) Equation
(1) vecomes
Q=a'p (2)
which is seen to be the general form of ordiner¥y Polsseuille flow., Reference 2
defines the flow of an incompressible fluld in a rectanguler channel as
D
. Dbt dp |, 122 B o, L 4 I, -
Qi 2 af [1 NS oy tanh =+ 55 tanh = * (3)
or, to a close approximation,
0 - 2 21,0658 am R ()
i~ 124 42 *““b 2h
where
Qi = volume flow = pressure
b = groove width = length
h = groove depth p o= ﬁiscosity




R A
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The welight flow rate for s compressible fluid is W = Q ﬁ%- vwhere

R = gas constant and T = temperature. The volume flow at unit pressure, Q,
is equal to WRT. Therefore, from Equation (4) , the volume flow at unit pressure
of a ccmpressible fluid is

bl

_ _bh” - h b} dp
Q = o 1 - 0.63 = tanh — P35 (5)

Eque: -on (5) is put into the context of the molecular pump by letting

u = bn]+) w dL
where
D = dismeter
w = land width
L = overall pump length

The final expression for continuum flow down the rectangulsr channel of the
molecular pump becomes

oh’ (b + W) K

= T P

a
i | (6),
where
h . b
K3 =1 - 0,63 oy tanh =y

Comparing Equations (2) and (6), the constent a' is given by

3
h’ (w + b) K 4
8’ 12 u ar ()
B. b' CONSTANT

1) b By assuming purely molecular flow (i.e., p is very small), Equation !
ecomes .

Q=1 | | (8)

From Equation (19) of Appendix A, b' is obtained as

- 8 K, (w+ %) (b\h)2

R kT 4
LT R ) Vies & (9)

vhere :
Kl = geometrical factor given in Figure B-l

B=3

v R AT
S T 5 S j‘..;‘r\' s 2 . . 5 :
[ PO U RN 2 S RO ‘. + G v L,
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k = Boltzmann constant
m = mass of molecule

c. _cl/c2 CONSTANT

Assume that the mean free path is smell compared to the channel

dimensions, but not negligibly small. With this assumption Equation (1) becomes

c
Q=a'p+£—‘-b'
2

Substituting from Equations (T) and (9) for a' and b'

3 2
i bh (w+b)K5p ap 8Kl(w+b)(bh) T °1 ap
Q,_, ——— + — —
12 p aD dL 32D (h + b) 2m C2 av
or
3
MW gl REar e ]
12 p =D aL th (h+Db)p 2mm ca_‘

But, in this flow regime, Polsseuille flow also holds provided a correction

factor for siip at the boundaries is included. Therefore, the next step is to

derive an expression for flow with glip in a rectangular chennel.

It will be azzumed thet the flow can be approximated by flow between

parellel, flat plates. In Figure B-2 therefore,

b
h

> 1

(10)

(11)
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Assume v # 0 (i.e., the fluid has a velocity at the plates).

Assume e frictional force exists at the plates given by _

f=e8v (12)

where
numerical coefficient of force

S area = 2bg

For equil}mbrium at the plate surfaces,

%Ay(pl-pz)=f+2bzug—;— (13)

where
Oy = incremental thickness of fluid in y direction at wall

For small Oy, 2b Oy (pl - p2) —y 0

Therefore,
dv_ . _ .
-2‘b£p,dy -f-efb.ecvo
or
- . A&
Yo * e ay (14)

Tne veloclty profile for flow between flat plates can be derived from the following
equation (FReference 3).

3% 1l 9p
o2 (15)
Integrating,
-%— = - -:1-'- %y + (const ), (16)

When y = 0, % = 0; therefore (const )l =0
From Equations (14) and (16) a new boundary conditiou which introduces slip

o o e 2

is obtained as i
v « & X 3 1 4
’ ¥
B-6
s - [OOSR oy ./ 1
’ r + s \,3\: s ¥ % . i %, 3:;" “4.( 3
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Integrating Equation (16) and using the boundary condition from Equation (17)
gives the velocity p?ofile with slip as

2
= 2 S (b _ 2, b
V= o as (u vt - (18)
: The volume flow is
.
) h/2
V=2b v Ay
3 0
Substituting Equation (18) and integrating gives
* 3
- V = L QR l -+ -6-—E
: 12y dg h e
L] Denoting the "coefficient of slip" by { = -ep‘—-
y ;
_ bh -% (l+-c) (19)
J The flow can be put in terms of the molecular pump by substituting -
11l Q= Vp
a k i ' ) ﬂD
U it = gy &
}
Therefore,
3
12 p o B ¢ -

} . Comparing Equatvions (11) and (20),

2K ub ke %

§- = mmm— ——
hc KE(I‘H—bip 2m c:2

_ I'( ‘ - ’ 16 Mo ” é’l ' .
L ¢ - mhes Vi @
l .

NG
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By definition

Pk pg P B A AT

¢= Ex (22)
. wbere
A = mean free path
X = constant nearly equal to unity
The relationship between p and ) is !
1 -
p=3nmv A (23)
.where
n = -molecules/unit volume .
Vv = average velocity
Letting . y
' ~ 1/2
m :
S .
- RTg
A = DB ' - (24)
kT -
2 Y om
Combining Equations (21), (22), and (24),
Brub BT %Ly Hey ‘
‘BK} h+b)p 2m e, E T _ I
27 e
: 2m
and
— cla‘ BnKs(h+b)
- ~ ¢, 16 Kb
Knudsen found that for flow in tubes, X = 0.85 (Refei-encg 1). -
‘3-8 o S ) Ff
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Assuming this value of X,

K5 (h +v)

c2 = 2K1b — : (25)

D. ¢, =~ ¢, CONSTANT

2 1

Yo evaluate ¢, - c,, it is assumed that the mean free path is greater
than the dimensions of th€ passegeway, but not much greater. Now impacts with
both the walle and with other molecules occur. The momentum of the moving molecules
can then be carried to the walls by two processes: (1) by direct impact
with the walls,and (2) by the molecules struck by these molecules. Knudsen
(Reference 1) gives the following corrective factor to be applied to the basic
equation for pure molecular flow.

o[

1+ kt
— T ‘ (26)

l‘+

>
.-

vhere )
A = passageway cross-sectional area
= perimeter of 2ross section
k., is a-constant introduced to account for the time elapsing between impacts of

moving mclecules and others, and transfer of this momentum vo the walls. k has
a value of approximately 1/2. Applying the correction factor to Equation (8) glves

’ 2 - LA
«- 8K1(w+b) (vh) kT ap 1+33k (21)
- 35D (h +b) 2m dL 148
: A
Aasmingthat-h% << )\ » -
8K (w+d) () _ e "
V= B TwTD) — [1'(l'kt)i'§]
Letting‘
A = bh ]
B=2(b+ h) -
K, (w + b) (vn)? s -
A D = [1'(1 k)m] (e8) -
B9 "

-y
et
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For small velues of p, Equation (1) becomes

B b A W e i S

@=s8'p+b [l'(cz'cl)P] = b'[l’(ce'cl’%:"f’]

Substituting for b' from Equation (9)

8K (v+b) (bh )2 —

kT d a'
Q- 3xD (h + Db) 2nm Ef [1’ ‘Cg'cl'f,ﬁ') P] (29)

Comparing Equations (28) and (29)

- 2bh _ a' -
l-k) Smso) -°F (ca“cl'b', (%)
and ( )
1-k)2bh
. _ t a'
"% T XT®rEI P b (500)

From Equations (7) and (9),

gt A-th(h+'b)

' (31) ’
304 K b\/-‘il '
By 2m '

Substituting Equations (31) and (24) into (30) and letting k, = 1/2 gives

) (h + )
e = Q. = h I b + K3 —m— (32)
2" % — \n(b«#h-) 32 K, b ~ _
u ~‘
Equations (25) and (32) vhen combined give c, and c, as
:\’34h+b)h K, (h + b) : - . E
- u(1:>+')+ 32K b 1

I : . N
W RET R
| L |
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b b E(h«»b)
— (ﬂb+h)+ 32 K b
¢ = — 2m (b + D) — (34)
1 - Ez________

2Klb

The above expressions for ¢y and c, are only approximate and can be improved by
the following process.

Let

0
n
e}
=

where
d = constant to be evaluated

x(b +B) & 32 K ©

n ( b K3 (h + b))

fj (h +b)h ( b . K, (b + b)) (36

J = ﬁs (h + b)
2K b
From Equation (1),
o 1+dJp
Q=8'p+d gy (37)

Differentiating Equation (37) with respéct to p and setting the expression equal
to zero gives the pressure at the minimum of the flow curve as )

o /T

B-11
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Knudsen found that at the minimum of the curve the product p,C

unity.
Therefore,
]
b=d~ (H-7J)
and
_ b g
= TE -7

Combining with Equations (31), (35), and (36),

Kj(b+h)
X b K3(h+b)
BK.Lb(ﬂ o +n) * 32 K, D )

a =

" Combining Equations (35), (36), and (40),

Kh(b + h)
02= 3
-
L Tk 1
p\/'é';‘-m— 2K1b-K3(h+b)_
K2 (m+n)ih
cq = 2

The final expression for flow down a rectangula

3
szh (w+b)K5p£i‘E
12 p 7D aL

K.2 (b+h)2n

1
b \/1___{! -~ K ]
8K] V) : [21{11) §(h+'b)

r channel for any fluid state is
found by combining Equations (1), (7), (9), (¥1), ard (42).

1+
BEbu;;%‘? 2K b - (b+h

-l b

is very nearly

2
. 8 K, (w + ©)(bh) | F—LT. ap
3 «D Zh +D) 2m dL

K5h(b+h

1+ —

B-12

u,ﬂ/% ‘[2K1b-_l(3(b+h

]

(39)

(40)

(b1)

(k2)

(43)

FrranuC )

N me——

Tk e AN .
R T e R

k™




Report No. 2808, Vol. II

II. AXIAL LEAKAGE OVER LANDS

An equation of the form of Eguation (1) is again used as indicated below.

l+ec,p
Q=a"p+d" 5_—4_—3%'5 (44)

A. a" CONSTANT

By assuming purely continuum flow, Equation (44) becomes

1 - Q = B." P . (’"‘5)

The volume flow at unit pressure for Poisseuille flow is given by

3
vh’ p 4p
= 5 @ (46)

F—

In terms of the molecular pump geometry,

[—"

b = D here @ = helix angle
cos

M ar——noa,
=
[}

8 = radial clearance

li, dgp W +D ap
: N L
i
- , Inserting these expressions in Equation (46) gives the axisl leakage for

} continuum flow as

5 , (D) 8 (w+b)p 4
: Q= Touw o (47)

< - Comparing Equations (45) and (47),

. w_ (D) & (v +p)
I 1ouw

25

(48)

! B-13
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B. b" CONSTANT

By essuming purely molecular flow, Equation (L4l4) becomes

Q =b" (49)
From Equation (23) of Appendix A, b" is obtained as

8 K, gfﬁ(nD) (w + 1)

w o kKT &
b = 3w 25m 5% (50)

where

K2 = geometrical factor given in Figure B-3.
C.  cs/c) CONSTANT

Assume that the mean free path is small compared to the channel
dimensions, but not negligibly small. Equation (44) becomes

¢
Q=a"p+ ;i- B (51)

h A, s . - - et R ) A SN 2k O AL R NS It sl
e Y gl P g g R B T e e F a1 1 b e D A A

Substituting Svom Equations (48) and /50),

- ev)p |y, 2t N/kr 5 2) ¥

12uw dL 33 om ¢, }

But in this flow regime, Poisseuille flow with slip also holds. Equation (19), §
repeated below, gives the flow with slip for a rectangular passageway. 3
3 6 f?s

- bl dp &

V= T dz(l+h C) i

b

Bquation (19) is made applicable for flow over the lands by the following +
substitutions: iy
h =8 $

¥

aD ‘

cos P e

d b d :

g _ 1t ap

1) cos @ T g

;

B-14 £
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The flow at unit pressure becomes

3
P ¢ ) 612'(;”)1’ @ (1+§ ;’ (53)

Comparing Eque.tions- (52) and (53)

6 .2%H kT ©3
5 "8 am ¢,
16 K, u c
_ 2 kT 3 L
From Equations (22), (24) and (54)
16 K, kT %3 RT
= = F 8N
3p 2m ¢
b 5 kT
PVom
c
= - K g
Cy 2
Letting K = 0.85, as found by Knudsen j
c
2 c T (55)
4 2
D. c,“-c3 CONSTANT
Assume the mean free path is greater than the dimensions of the ¥
passageway, but not much greater. The corrective factor to be applied to the
molecular flow equation is given by Equation (26) as

ka
l+x-2-kt

l+rB-

B-16
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Applying Equation (26) %o Equation (50) gives the flow over the lands as

2 LA
Q-8K26 (D) (w + b) ET ap 1+ 55k
B 3w 2rm 4L l+--A-
AB
Assuming =3 <« 1,

8 X, 82 (D) (v + D)

Q= 3w 2 dL iz
Letting A = cgg“
B = 21D
© T cos
8 K 62 («D) (w + 1) ]
Q = 2 LT 4 1-( -k.) 26
_ . w Y 2m dL 7\

For small pressures, Equation (44) becomes

. Q=8."P+b" []_-(Ch'c5)p] =b"[l-(c‘.‘-03- %;;')P]

Substituting for b" from Bquation (50),

8 K, 82 (D) (v + b) "
2 KT 8 (1. (e -o .8
O =5 2w L [ L= (e = oy - gm) P]

Comparing Equations (57) and (58)

(1= kt) 28 ._n
L a
° "% Tpa o
From Equations (48) and (50),
8

(56)

(57)

(58)

(59)

(60)
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Bubstituting Equations (24) and (60) into (59) and letting k, = 1/2,

kT

) s . fr, i)
cu . c3 = — ‘ “ + 3, 4 l (61)
2mm /

Equations (55) and (61) together give

1 1
s |3+ =g
c5 = — (62

kT
w2k, - 1) [ 5m

1 1
2k, 8 (E *321(2)

w2k, - 1) BT
2mn

c) (63)

Again, an improvement can be made.

Let
e, = dH
c3 =dJ

vhere
1 1
2K2°(n+321(2)

Ha ———
kT

(64)

l 1 }-:'.
"(I o33 Ke) : , |
J = — (6y) '

-1) kT

2 2mm

From Equation (44),

B-18
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Differentiating with respect to p and solving for the pressure at the minimum
of the flow curve gives

P (‘\[ b afE-d) . 1) (67)

E Letting pc, = unity as found by Knmuds:n,
. . lla“ -
B 8§ - N (68)

Inserting expressions from Equa’ions (60), (64), and (65),

. - 1
l a= 1 1 (69)
) 8 Ke(; * 5% K2) _

[ Combining Bguations (64), (65), and (69),

i 03 = (70)
- : kT
’ Il 8pK2 (2K2-l) e
: : [
[; : ¢, = - (11)
‘ ’ ll-u(QKa:-l) \/-2—5— _
The finel expression for flow over the lands for any fluid state is found by
combining Equations (44), (48), (50), (70), and (T1).
~ I
L ‘ q - (D) 5iag:~+ -
. : : s ” (72)
2 - k T
| ) Bxabi\b)(w+b) T 8 uK, (2K, 1) e
: W am & )
| AN —
1 N
kT
b (2K, -1) s
i L .
! B-19 -
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TTI. ROTOR-INDUCED FLOW
The third end final flow process occurring within the molecular pump is the -

flow up the channel caused by the motion of the rotor. The rotor-induced flow for
purely molecula. flow is given by

o £, (1 -2£)(b+2n)+¢td 1/2
_ Nbh 2 1 2 2 >
= 1%+ n) l T, T, - £,1, — [(ﬂD) (w + 1) ] P (73)
where._
N = rotor speed, rpm

£

coefficient of momentum transfer

Tc a close approximation, the coefﬁcient of momentum transfer equals unity which
reduces Equation (73) to

12
Q= %_{7 [(uD)2 - (w +.b)2] P ‘ (74)

Equation (T4) 1s seen to be simply the cross-sectional area of the channel times
one-half the velocity of the rotor in the direction of the channel times a =
moaification factor to account for the relstive area of stationary and moving
members. Since the average fluid velocity between a moving and stationary surface
is essentially one-half the velocity of the moving surface, .regardless of

whether the flow is in the molecular or continuum regime, Equation (7#) becomes
the applicable equation over the entire flow spectrum.

IV. NET FLOW

_ The net flow through the molecular pump is the rotor-induced flow minus
the flow down the channel minus the flow over the lands. Combining Equations
(43), (72), and (74), the net flow is

. l+ec p l+c, D '
QN=AP-_BP+C l+c:p)§ (Dp+Emi—p- %f- (75)
vhere '
: ) g1/2 ,
A= 71 om:ha- B [(ﬂD)2 - (w+ ‘n)] _ (76)

320

SR A N P 5 WrmT




%

HEE 3 e

PR~

R~

e s e OB

o

Report No. 2808, Vol. II

3
vh” (v + b) K1
B = 12 )ID (77)
. 8Ky (v + D) ) _ o 8)
37D (h + b) 2mm
(xD) 63 (v + b)
8 K, 82 (D) (v + b)
2 kT
E = g = (80)
V. PRESSURE RATIO
The molecular pump develops its maximum pressure ratio when the net flow
-equals zero. Letting Qg = O in Equa.tion (75)
@ _ Ap
daL 1+clp l+c§p ) . (81)
+E +(B+D)p

l+c2p l+cl‘_p

Integrating,

RS LS
tC P L P + (B + D) p = AL + CONST.

Inserting the boundary conditions:

vhen L =0, p=p,

o
vhen L = L, P =D,
- c ¢ -
P (C +E) l+c, D C{Ei“l)l-ir‘c P E(Ei-l) AL -(BD) -
B ) ) e
e, 2 “e b e
' (82)
vhere

(82) (ua) G100 2150 G2 g0 oy mre gtven by Bquations (76), (1), (78), (79),(80)
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Bquation (82) defines the pressure ratio that the molecular pump can develop.
The equation applies in molecular or continuum flow and accounts for any
transition between flow states occurring within the puny itself. It is
interesting to note that if pressures are assumed small in Equation (82) it
reduces to the purely molecular flow case derived in Appendix A. Conversely,
if pressures are assumed large, Equation (82) reduces to the equation of the
screw, or visco-seal (Reference &4).

VI. LFAKAGE RATE

From Equation (75),

Ap -~
l+ec 1 Q‘“'_;_+ D (83)
1 3
l+_c2p l+ch_p

dp
aL

C +(B+D)p

Integrating and using the boundary conditions

vhenL =0, p=0p

vhenL =L, p=0p

(czp -H’ (°2pe+l) (chpo'I (chp +].) Ac2p° +Mp Q,d) (!Acupoampo-% ]
lc2p°+1) ‘cape-n’ “’b,l’o*l |chp -I) lAczpe +Mp 'QN) ‘Acupeampe-%

;)[A [ = 2] -4 tn (2-%:——:!2:” (81)

exp (L -
vhere
f__[e Acy - oy (A 2)]
F= 2 Ac;(A v Qe )
G - E[“cu - 3 "‘ 4 ¢ )}
- 2Ach]A + cq
= QNAce
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ey |

‘ J=2A3:-2

E c,

M=(A 2)

i N {A-gyc)
0 = B12-D

Equation (84) is the general solution for sny pressures as boundary conditions.
However, a considerable simplification of the equation is possible by letting

= 0, which is the actual operating condition when the molecular pump is used
a.s a seel-to=-gpace.

Letting Py = 0, the leakage equation becomes

r . |
c{aA e, - ¢ (A oy © 2]] EEA ] (A - Qq o]
2Ac,. [A+ 2Ac [A+ e
{1 Ap, 2r W c2) Ap y (A Oy y)
1+ ¢y P, l+c)+p _
& (Ecl Ecz
: 2Ac2 - 2A°u
2 2
é l-Aca +(A- 2)p l_Achpo +L: cu]p )
l o
Q i
B+D N -
exp L- A2 A P, - Qg 4n ( o - A po) (85)
vhere A, B ; ¢, are given by Equations (16), (17), (78), (19),

3 L ?

; - (80), (hl) s (h2) , (70)l a.ng (’{i “is with the pressure ratio equation, the leakage
(7 equation reduces to the equations for molecular flow and the visco-pump asg the

g ! pressure becomes small and large, respectively.

| B-23
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For any given operating condition, there is an optimum geometry for the
molecular pump defined by the variebles b, w, and h. These variables can be
optimized on the basls of meximum pressure ratio or minimum leaksge, whichever
is desired. The requirement for SNAP-6 is minimum leakage. The complexity of an
optimization is apparent from the form of the pressure ratio and leakage equations.
The complexity is increased due to the fact that neither pressure ratio nor
leakage occur as explicit functions. Due to the probable variation of trensition
regime optimums from molecular regime optimums, an optimization program would
be of considerable value for the SNAP-8 operating condii ion.
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SNAP-8 SEAIS-TO-SPACE DEVELOFMENT TEST PROGRAM

Aaryjet~General Corporation
ABSTRACT

The test program described in this report was conducted to determine the
effectiveness of the molecular pump as & flow restrictor. The problems encountered
and the remedial steps taken are outlined, Good correlation between theoretical
predictions and test results is found. The correlation is particularly good when
use 1s made of the transition flow theory which accounts for deviations from purely
molecular flow. The molecular pump configuration selected for the SNAP-8 system
shows good performance characteristics from both theoretical and experimental as-~
pects. Appendixes contain two mathematical models of the molecular pump: one is
based on molecular flow, and the other is an all-inclusive theory which covers
operation over the entire range from molecular to continuum flow. Computer opti-
mization results based on the molecular flow theory are included.
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